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We give an analytic treatment of radiative cooling behind radiative shocks following solutions given by
Chevalier and Imamura. We demonstrate that within the approximation of a steady state radiative shock, the
radiative cooling lawsL~Ta that give rise to the oscillatory instability modeled by Chevalier and Imamura in
g=5/3 cooling gas are stable to the dynamical thin-shell overstability in this gas, and vice versa. We also show
that the fundamental features of the dynamical overstability observed by Grunet al. can also be understood on
these bases.
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I. INTRODUCTION

Radiative shock waves, loosely defined as shock waves
with radiative cooling times for the shocked plasma shorter
than the hydrodynamic evolutionary time scale, exhibit vari-
ous modes of instability and overstability. For appropriate
forms of the temperature dependence of the radiative cooling
function, a radiative cooling zone exists some distance be-
hind the shock front. Here the shocked plasma undergoes a
thermal instability and cools catastrophically. The cooling
rate is dependent on the shock velocity, and oscillations in
the shock velocity and distance behind the shock front to the
cooling zone may develop as the shock decelerates. This has
been modeled for blast waves in the interstellar medium
[1–3] as well as accretion column shocks in a magnetic white
dwarf [4].

In a related phenomenon, a decelerating shock may be-
come subject to further oscillations. Corrugations or ripples
that grow as a power law of time may develop[5–9]. These
ripples grow because the force due to the thermal pressure of
the shocked gas, which is perpendicular to the local shock
front, is not necessarily parallel to the force from the ram
pressure of the upstream plasma, which is directed along the
shock velocity vector. In shocks with sufficiently high com-
pression this imbalance of forces induces oscillatory move-
ment of material within the shock shell. Parts of the shell that
contain less mass slow down more than the parts of the shell
that contain more mass and a growing oscillation ensues. In
its nonlinear phase[9] knots or clumps of material may form
with sizes similar to the shocked shell thickness.

The existence of growing ripples in radiative shock fronts
was demonstrated in a laboratory experiment by Grunet al.
[10]. These authors produced blast waves in nitrogen and
xenon gas and showed that shocks in the more radiative xe-
non gas rippled with a power-law growth rate similar to the-
oretical predictions(but still with significant discrepancies),
whereas shocks in nitrogen remained stable. More recently
other researchers, working in a somewhat different parameter
space, attempted to produce the rippling overstability, but
were unable to do so[11]. Recent papers[12,13] have
pointed the way towards a more quantitative understanding

of these phenomena. Detailed calculations of radiative cool-
ing for Xe and N demonstrated that the shock compressions
produced in N blast waves and in Xe blast waves with ve-
locity below about 25 km s−1 were not sufficient to produce
the overstability, and that the observations in Refs.[10,11]
could be understood on these grounds. In these calculations,
the mass swept up behind the blast wave and the correspond-
ing overstability are generally dominated by gas that is in the
process of cooling radiatively following shock passage,
rather than the quasi-inert shell of cold gas generally treated
in theories, e.g., Refs.[5–9]. This is also the gas responsible
for the oscillatory thermal instability discussed briefly above,
but the precise relationship between the two forms of
instability/overstability in the experiment of Ref.[10] re-
mains obscure. It is the aim of this Brief Report to elucidate
this using an analytic approach which builds on the original
work of Ref. [4]. Section II describes the analytic model,
Sec. III discusses comparisons with experimental data, and
Sec. IV concludes.

II. FORMALISM

We follow Ref. [4] which gives analytic solutions for the
system of flow equations
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for plasma pressurep, densityr, velocity v, and polytropic
index g. The spatial coordinate isx=0 at the radiative cool-
ing zone, andx=xs at the shock front. The radiative power
losses are given byL=Ar2sp/rda whereA is a constant. For
boundary conditionsrsxsd=rinsg+1d / sg−1d, vsxsd=−uinsg
−1d / sg+1d, and psxsd=2rinuin

2 / sg+1d, analytic solutions to
Eq. (1)–(3) can be found for various values ofa, which are
given in Table I in terms of the variablesj=x/xs and w
=v /uin. Concentrating on theg=5/3 case, Ref.[4] pro-
ceeded to perturb the position of the shock front, and solved
numerically the system of six coupled first order differential
equations that describe the(complex) perturbations top, r,*Electronic address: jlaming@ssd5.nrl.navy.mil
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and v. They found the oscillatory thermal instability at the
fundamental frequency(essentiallyuin /xs) for a,0.4 and
instability at the first and second harmonics fora,0.8. The
shock is stable for higher values ofa.

We take advantage of the analytic solutions for the steady
state to calculate the mass accreted behind the shock in the
steady state for various values ofa, given by

e0
xs rdx

=rinxs

E
−sg−1d/sg+1d

wf

s− w − w2d−afsg + 1dw2 + gwgdw

E
−sg−1d/sg+1d

wf

s− w − w2d−afsg + 1dw3 + gw2gdw

,

s4d
integratingw from its initial value of −sg−1d / sg+1d to its
final valuewf. For a,2 this final value ofw can be taken as
wf =0 without problem, and a finite result for the postshock
mass results. Foraù2, the postshock mass diverges aswf
→0. We make the assumption that the heated postshock gas
cools down to its initial preshock temperature, sowf
=−rin /r=−sTin /Tsdsg−1d / sg+1d.−sg+1d / s2gM2d where
M is the shock Mach number. Our solutions for the mean
postshock density integrated over the distance from the
shock front to the cooling zone in units of the postshock
density immediately behind the shock front are given in
Table II. In Table III we give the mean shock compressions
for the different values ofa, for g=5/3, 4/3, and 7/5, corre-
sponding to monatomic nonrelativistic and relativistic gas
and diatomic molecular(nonrelativistic) gas, respectively.

We have also calculated the shock compressions and ef-
fective polytropic indices numerically for a wider range ofa,
which are plotted in Fig. 1. In Ref.[5] it was shown that for
gef f,1.2 shocks may become overstable, depending on the
Mach number, with overstability becoming possible at higher
gef f for lower Mach number. Thus in the range ofa for

which the oscillatory thermal instability ing=5/3 plasma
may occur(a,0.8 as determined in Ref.[4]), shocks are
never subject to the dynamical overstability, and overstable
shocks always have values ofa that render them stable to the
linear oscillations. However,a.0.8, although a necessary
condition for dynamical overstability, is not sufficient. The
precise conditions for overstability in terms ofgef f, the Mach
number and thickness of the shell of shocked plasma, may be
calculated from analytic formulas given in Ref.[8].

III. COMPARISON WITH EXPERIMENTS

While the main virtue of the analytic approach pursued in
this Brief Report is in the transparent picture given of the
relationship between the two instabilities of radiative shock
waves, sufficient detail exists to allow us to compare with the
experimental results of Ref.[10], already modeled and fur-
ther interpreted to a certain extent in Refs.[12,13]. Behind
shock waves the magnitude ofa will be reduced due to the
ionization nonequilibrium, and increased by the nonequilib-
rium partitioning of energy between ions and electrons. In
the case of shocks in Xe, the radiative preheating is so strong
that the second effect easily dominates. Writing

L ~ SniTi + neTe

ni + ne
Danoneq

~ Teq
aeq s5d

so that

dL

dTe
= anoneq

Lne

niTi + neTe
= aeq

L

Teq
, s6d

we derive

anoneq= aeq
niTi + neTe

neTeq
. s7d

Identifying Te in nonequilibrium conditions withTeq in equi-
librium, anoneq.aeqs1+niTi /neTed. In ionization equilibrium
at temperatures approaching 106 K (Ti =Te and ni @ne), Xe

TABLE I. CI hydrodynamic solutions.
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obeys a cooling law witha.2, asL rises from 10−19 ergs
cm−6 s−1 at 105 K to 10−17 ergs cm−6 s−1 at 106 K [12–14].
Therefore in the shocked nonequilibrium plasma whereniTi
ùneTe [12,13], we expecta.3 or more. In Fig. 2 we plot
the real part of the growth exponent Ressd and its angular
degreel calculated from the analytic theory in Ref.[8] for
shocks of Mach numbers 10, 20, and 30, fora=3, which are
very similar to those calculated using the detailed atomic
physics calculations in Refs.[12,13]. From this calculation
and from Table III we estimate a minimum Mach number of
10–20 for a minimum shock compression of the same order,
in surprisingly good agreement with the more detailed analy-
ses in Refs.[12,13]. The existence of a minimum shock
Mach number for overstability, suggested by the behavior of
the overstability in Ref.[10], and bolstered by its absence in
the lower velocity shocks studied in Ref.[11], is now much
more firmly understood. Given that the shock can only cool
down to a temperature similar to its preshock temperature,
the amount of cooling and hence shock compression possible
will be higher if the shock Mach number is higher.

Similar considerations for N are less straightforward since
in the experiments the N cooling rate is more affected by the
electron density[13], as electrons collisionally depopulate
excited levels. TakingL~ne

bTe
a with 1øbø2 (b=2 for the

Xe shocks considered above), we should expect the onset of
dynamical overstability fora.b [6], i.e., at lowera than for

Xe. The radiative heating of the shock precursor is also less
strong than in Xe, so we expect some further reduction ina
due to the increase in electron temperature at the shock front.
In the low density limit, the N radiative cooling function
declines steeply with temperature between about 105 and
106 K, giving a.−3 [14]. It is difficult to determine its non-
equilibrium value, but it seems safe to say that it remains,0
for most of the blast wave evolution in[10], yielding no
overstability as observed.

So far we have only considered “steady state” radiative
shocks as an approximation to the decelerating shocks that
can become dynamically overstable. The deceleration will of
course change the postshock density and allow overstability
in a slightly different parameter range. Planar shocks decel-
erating fromv to v8 will have their postshock compression
increased by approximatelyv /v8. Spherical shocks change
their shock compression byvr82/v8r2, where r and r8 are
initial and final radii. Consequently shocks decelerating
faster thanv~ r−2 compress further(e.g., the pressure driven
snowplow,v~ r−5/2) while those with slower deceleration ex-
pand(e.g., Sedov-Taylorv~ r−3/2).

Detailed atomic physics has so far been absent from our
discussion. It will of course come into the value ofxs
.uinfg−1/g+1gkBT/nLTa [15], and into the shock Mach
number, which is reduced from the nominal value obtained
by dividing the shock speed by the initial gas sound speed by
the heating and ionization of the shock precursor by UV and
x radiation from the shocked gas[12,13]. In considering the
dynamical overstability of spherical blast waves,xs may be
considered the thickness of the shocked shell, which if too
thick suppresses the overstability. In the extreme case ofxs
being larger than the shock dimensions, the shock ceases to
be radiative, no matter what the value ofa. So long as the
shock is radiative, and can be said to be at least approxi-
mately in a steady state, one may evaluate the effective poly-
tropic index from Eqs.(1)–(3), input this together with
D=xs and the Mach number into the analytic theory in Ref.
[8] to determine the overstability.

TABLE II. Accreted column density.
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TABLE III. Shock compressions.

a 5/3 7/5 4/3

−1 5.585 8.232 9.560

0 6.286 9.273 10.77

1/2 6.989 10.22 11.82

1 8.302 12.31 14.32

2 7.684 lnM −4.132 11.78 lnM −9.418 13.82 lnM −12.32
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IV. CONCLUSIONS

We have extended the analytic description of radiative
shocks given initially in Ref.[4] to model the dynamical
overstability of the layer of cooling gas. This is a qualitative
departure from earlier works[5–8], who only considered
such behavior in the thin shell of already cooled gas, but
more consistent with our earlier detailed treatments of the
radiative cooling[12,13]. We find, at least ing=5/3 gas, that
the oscillatory thermal instability modeled in Ref.[4] and the

dynamical overstability in the cooling gas are mutually ex-
clusive. No form of the radiative power loss,L~Ta, can give
rise to both instabilities simultaneously. We conjecture that
such a relationship between the two forms of instability
should exist for lowerg. From Table III it is clear that the
dynamical thin-shell overstability can occur for lower values
of a in lower g gas, i.e., becomes more prevalent. In Eq.(3),
the term driving the thermal instability~g−1, so asg→1,
we should expect the oscillatory thermal instability to be-
come less prevalent. This indeed seems to be the case. Insta-
bility for the first overtone foraø−0.4 and for the funda-
mental foraø−4 for g=21/19 gas(as opposed to 0.8 and
0.4 for g=5/3) are reported in Ref.[16].

We have also shown that the dynamical thin-shell over-
stability theory applied to the cooling gas gives a good ac-
count of the main observations of such instabilities in Ref.
[10]. Inspection of the numerical results in Refs.[12,13] re-
veals that except at the earliest times, this is a good approxi-
mation, since the expansion of the cooled gas shell as the
blast wave expands reduces it compression, and the overall
behavior of the blast wave in increasingly dominated by the
more recently shocked gas.

ACKNOWLEDGMENTS
We acknowledge support by basic research funds of the

Office of Naval Research, and the ongoing encouragement
and advice of Dr. Jacob Grun.

[1] D. E. Innes, J. R. Gidding, and S. A. E. G. Falle, Mon. Not. R.
Astron. Soc.226, 67 (1987).

[2] T. J. Gaetz, R. J. Edgar, and R. A. Chevalier, Astrophys. J.
329, 927 (1988).

[3] P. A. Kimoto and D. Chernoff, Astrophys. J.485, 274 (1997).
[4] R. Chevalier and J. Imamura, Astrophys. J.261, 543 (1982).
[5] E. T. Vishniac, Astrophys. J.274, 152 (1983).
[6] E. Bertschinger, Astrophys. J.304, 154 (1986).
[7] D. Ryu and E. T. Vishniac, Astrophys. J.313, 820 (1987).
[8] E. T. Vishniac and D. Ryu, Astrophys. J.337, 917 (1989).
[9] M.-M. MacLow and M. L. Norman, Astrophys. J.407, 207

(1993).

[10] J. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, J. Craw-
ford, and B. H. Ripin, Phys. Rev. Lett.66, 2738(1991).

[11] M. J. Edwards, A. J. MacKinnon, J. Zweiback, K. Shigemori,
D. Ryutov, A. Rubenchik, K. Keilty, E. Liang, B. Remington,
and T. Ditmire, Phys. Rev. Lett.87, 085004(2001).

[12] J. M. Laming and J. Grun, Phys. Rev. Lett.89, 125002(2002).
[13] J. M. Laming and J. Grun, Phys. Plasmas10, 1614(2003).
[14] D. E. Post, R. V. Jensen, C. B. Tarter, W. H. Grasberger, and

W. A. Lokke, At. Data Nucl. Data Tables20, 397 (1977).
[15] J. M. Blondin and D. F. Cioffi, Astrophys. J.345, 853 (1989).
[16] M. D. Smith and A. Rosen, Mon. Not. R. Astron. Soc.339,

133 (2003).

FIG. 1. Plots of shock compression(lower panel) and effective
polytropic index(upper panel) againsta for shock Mach numbers
of 3, 10, 30, and 100 ing=5/3 gas(solid line) and ing=4/3 gas
(dashed line). In regions ofa where the oscillatory instability oc-
curs forg=5/3, thedynamical overstability cannot grow, since in-
sufficient shock compression takes places. Only foraù2 can suf-
ficient shock compression occur to drive the overstability, and then
only if the Mach number is above a certain critical value. See text
for further discussion.

FIG. 2. Overstability growth exponent Ressd against l for
Sedov-Taylor blast waves with Mach numbers of 10, 20, and 30 and
a=3, computed from the analytic theory in Ref.[8]. The maximum
in Ressd and the value ofl at which it occurs increases with increas-
ing Mach number. The values ofgef f are taken from the shock
compressions calculated in Fig. 1.
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